Shear-induced solidification of athermal systems with weak attraction.

نویسندگان

  • Wen Zheng
  • Hao Liu
  • Ning Xu
چکیده

We find that unjammed packings of frictionless particles with rather weak attraction can always be driven into solidlike states by shear. The structure of shear-driven solids evolves continuously with packing fraction from gel-like to jamminglike, but is almost independent of the shear stress. In contrast, both the density of vibrational states (DOVS) and force network evolve progressively with the shear stress. There exists a packing fraction independent shear stress σ_{c}, at which the shear-driven solids are isostatic and have a flattened DOVS. Solidlike states induced by a shear stress greater than σ_{c} possess properties of marginally jammed solids and are thus strictly defined shear jammed states. Below σ_{c}, shear-driven solids with rather different structures are all under isostaticity and share common features in the DOVS and force network. Our study leads to a jamming phase diagram for weakly attractive particles, which reveals the significance of the shear stress in determining properties of shear-driven solids and the connections and distinctions between jamminglike and gel-like states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear-induced rigidity in athermal materials: A unified statistical framework.

Recent studies of athermal systems such as dry grains and dense, non-Brownian suspensions have shown that shear can lead to solidification through the process of shear jamming in grains and discontinuous shear thickening in suspensions. The similarities observed between these two distinct phenomena suggest that the physical processes leading to shear-induced rigidity in athermal materials are u...

متن کامل

The effect of bonding temperature on the microstructure and mechanical properties of 939 super alloy by transient liquid phase bonding method

In this research, the effect of bonding temperature on the microstructure and mechanical properties of Inconel 939 super alloy by transient liquid phase bonding method. For this purpose, the middle layer of MBF20 with a thickness of 50 microns and three temperatures of 1060 °C, 1120 °C, 1180 °C and a time of 45 minutes have been used. In order to evaluate the microstructure, a scanning electron...

متن کامل

The effect of bonding temperature on the microstructure and mechanical properties of 939 super alloy by transient liquid phase bonding method

In this research, the effect of bonding temperature on the microstructure and mechanical properties of Inconel 939 super alloy by transient liquid phase bonding method. For this purpose, the middle layer of MBF20 with a thickness of 50 microns and three temperatures of 1060 °C, 1120 °C, 1180 °C and a time of 45 minutes have been used. In order to evaluate the microstructure, a scanning electron...

متن کامل

Inhomogeneous shear flows in soft jammed materials with tunable attractive forces.

We perform molecular dynamics simulations to characterize the occurrence of inhomogeneous shear flows in soft jammed materials. We use rough walls to impose a simple shear flow and study the athermal motion of jammed assemblies of soft particles in two spatial dimensions, both for purely repulsive interactions and in the presence of an additional short-range attraction of varying strength. In s...

متن کامل

Effective temperature in athermal systems sheared at fixed normal load.

We perform molecular dynamics simulations of repulsive athermal systems sheared at fixed normal load to study the effective temperature TL defined from time-dependent fluctuation-dissipation relations for density. We show that these systems possess two distinct regimes as a function of the ratio TS/V of the granular temperature to the potential energy per particle. At small TS/V, these systems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E

دوره 94 6-1  شماره 

صفحات  -

تاریخ انتشار 2016